ent-Kaurane and Beyerane Diterpenoids from Excoecaria agallocha¹

Ammanamanchi S. R. Anjaneyulu,* Vadali Lakshmana Rao, and Karanam Sreedhar

School of Chemistry, Andhra University, Visakhapatnam-530 003, India

Received May 30, 2001

The roots of *Excoecaria agallocha* yielded four new diterpenoids, *ent*- 3β ,20-epoxy- 3α , 6α -dihydroxykaur-16-ene (agallochin F) (**1**), 3β ,20-epoxy- 3α -hydroxybeyer-15-ene (agallochin G) (**2**), 3β ,20:15*R*,16*S*-diepoxy- 3α -beyeranol (agallochin H) (**3**), and 3β ,20-epoxy- 3α , 6α -dihydroxy-18-nor-beyer-15-ene (agallochin I) (**4**), along with three known derivatives, 2-acetoxy-1,15-beyeradiene-3,12-dione (**5**), 2-hydroxy-1,15-beyeradiene-3,12-dione (**6**), and *ent*-kauran-16 β -ol-3-one. The structures of **1**-**4** were determined by spectroscopic (NMR and MS) data interpretation.

Agallochins A–E and six known diterpenoids² were recently reported from the hexane extract of the roots of the Indian mangrove plant *Excoecaria agallocha* L. (Euphorbiaceae). Further extraction of the roots with CH₃OH– CH₂Cl₂ has furnished four additional new diterpenoids, agallochins F–I (**1**–**4**), along with 2-acetoxy-1,15-beyeradiene-3,12-dione (**5**), 2-hydroxy-1,15-beyeradiene-3,12-dione (**6**), and *ent*-kauran-16 β -ol-3-one. Compound **5** has now been reported for the first time from the nature, while it was reported earlier as a derivative of **6**. The details of the structure elucidation of **1**–**4** are presented here.

Agallochin F (1) analyzed for $C_{20}H_{30}O_3$ by elemental analysis, consistent with the molecular ion at m/z 318 in its EIMS. Its IR spectrum indicated hydroxyl and exocyclic methylene groups. The ¹H NMR spectrum showed two tertiary methyls at δ 1.20 and 1.26, two exocyclic methylene

protons at δ 4.81 and 4.76 (each, s), two hydroxymethylene protons at δ 3.82 and 4.25 (each, d, J = 8.7 Hz), and a hydroxymethine proton at δ 3.97 (td, J = 11, 4 Hz). The ¹³C NMR spectrum showed 20 carbon signals, which were analyzed as two methyls, nine methylenes, four methines, and five quaternary carbons from its DEPT spectrum. The chemical shifts of the respective carbons were assigned on the basis of HMQC and ¹H-¹H COSY data and in comparison with values reported for the related compound ent- 3α , 7β , 14α -trihydroxy- 3β , 20-epoxykaur-16-en-15-one.³ The two signals at δ 104.0 and 153.8 and the two oxygenated carbons at δ 69.2 (C-20) and 98.7 (C-3) accounted for exocyclic methylene and hemiketal functionalities in the molecule. The third oxygenated carbon at δ 67.4 (d, C-6) accounted for the secondary hydroxyl at C-6, as in any other position the respective carbon would appear at a lower field,^{4,5} whose configuration was fixed as equatorial from the coupling constants (J = 11, 4 Hz) of H-6.

The HMBC correlations (see Supporting Information) observed between C-3 (δ 98.7, s) and H₃-18, H₃-19, H₂-20, and H₂-2, C-20 (δ 69.2, t) and H-5, H₂-1, and H-9, C-6 (δ 67.4, d) and H-5 and H₂-7 and the NOESY correlations observed (cf. experimental) between H-9 β and H-7 β , and H-5 β and H-7 β , showing a *cis* relationship between H-5 and H-9 and between H₂-20 methylene protons and H-14 indicating their proximity in space are in support of the structure, 3,20-epoxy-3,6-dihydroxykaur-16-en (1), for agallochin F. The absolute configuration of agallochin F was taken as *ent*-kaurane in view of its levo specific rotation as noticed for several *ent*-kauranes⁶ to establish its structure as *ent*-3 β ,20-epoxy-3 α ,6 α -dihydroxykaur-16-ene (1).

Agallochin G (2), mp 152–154 °C, analyzed for $C_{20}H_{30}O_2$ by elemental analysis, consistent with the molecular ion at m/z 302 in its EIMS. Its IR spectrum indicated hydroxyl and symmetrically disubstituted alkene. Its ¹H NMR and ¹³C NMR spectra are reminiscent of a beyerane diterpenoid,⁷ showing the characteristic 15-H and 16-H at δ 5.46, 5.59 (each, d, J = 6 Hz) with the corresponding olefinic carbons at δ 133.1 (d, C-15) and 137.2 (d, C-16), respectively. The two oxygenated carbons at δ 98.2 (s) and 67.4 (t) accounted for the hemiketal carbons (C-3) and C-20, respectively, as in **1** to suggest the structure of agallochin G as **2**.

The HMBC correlations (see Supporting Information) observed between C-3 (δ 98.0) and H₂-2, H₂-1, H₃-18, H₃-19, and H₂-20, C-20 (δ 67.4) and H₂-1, H-5, and H-9, C-16 (δ 137.2) and H-15, H₂-14, H₂-12, and H₃-17, and C-15 (δ 133.1) and H₂-14, H-9, and H₂-7 and the NOESY correlations (cf. experimental) between H₃-18 and H-5, H-5 and

© 2002 American Chemical Society and American Society of Pharmacognosy Published on Web 02/20/2002

^{*} Corresponding author. Tel: 0891-754871, ext 214 & 236. Fax: 0891-755547 & 0891-570365. E-mail: anjaneyuluasr@yahoo.com/orgchem@ satyasaionline.net.in.

H-9, and H-9 and H-1, showing their mutual *cis* relationship, and between H₂-20 and H-15 showing *cis* orientation of H₂-20 and ring D are consistent with structure **2**. The absolute configuration of agallochin G was taken as beyerane in view of its levo specific rotation, as noticed for all beyeranes, versus dextro rotation for *ent*-beyeranes⁶ to derive its structure as 3β ,20-epoxy- 3α -hydroxybeyer-15-ene (**2**).

Agallochin H (3), mp 164–66 °C, analyzed for C₂₀H₃₀O₃ by elemental analysis consistent with the molecular ion at m/z 318 in its EIMS. The ¹H NMR and ¹³C NMR spectra of 3 were found to be very similar to those of 2 except for the replacement of two olefinic protons H-15 and H-16 by two epoxy protons, each as a doublet (J = 4.0 Hz) at δ 3.00 and 3.15, and the olefinic carbons C-15 and C-16 by epoxy carbons at δ 55.2 (d) and 59.6 (d), respectively, as documented for the related compounds^{7,8} to suggest its structure as 3. The location of the functional groups in agallochin H could be supported from the HMBC correlations (see Supporting Information) observed between C-3 (δ 98.2) and H₂-2, H₂-1, H₃-18, H₃-19, H₂-20, and H-5, C-20 (δ 67.8) and H₂-1, H-5, and H-9, C-15 (δ 55.2) and H₂-7, H₂-14, H-16, and H-9, and C-16 (δ 59.6) and H-15, H₂-14, H₃-17, and H₂-12. The relative and absolute configuration of agallochin H was taken as that of beyerane in view of its levo specific rotation⁶ to establish its structure as 3β ,20:15*R*,16*S*diepoxy- 3α -beyeranol (3).

Agallochin I (4), colorless oil, analyzed for C₁₉H₂₈O₃ by elemental analysis, consistent with the molecular ion at m/z 305 [M⁺ + H]⁺ in its positive FABMS. Its IR spectrum showed chelated hydroxyl and cis olefin groups. A preliminary examination of its ¹H and ¹³C NMR spectral data revealed that it might be a new nor-beyerene diterpenoid. The appearance of only one tertiary methyl at δ 1.00 (3H) instead of four of a beyerane and the presence of a secondary methyl at δ 1.10 (3H, d, J = 6.3 Hz) indicated that it might be a 18-nor- or 19-nor-beyerene diterpenoid. The signal at δ 3.80 (m) accounted for three protons, which might include two of an oxymethylene and one of a hydroxymethine. Agallochin I on acetylation gave a monoaceate, $C_{21}H_{30}O_4$, (+) ve FABMS $m/z 347 [M^+ + H]^+$, where the hydroxymethine proton in **4** separated from the oxymethylene protons and appeared at δ 5.10 (1H, td, J =11.5, 5.0 Hz) in support of the presence of a secondary hydroxyl. The coupling constants of the acetoxy methine proton and by inference that of the hydroxymethine proton suggested its axial orientation, with the acetate or hydroxyl being equatorial.

The ¹³C NMR spectrum showed 19 carbons, which were analyzed as two methyls, seven methylenes, six methines, and four quaternary carbons. The oxygenated carbons at δ 68.5 (t, C-20) and 98.3 (s, C-3) confirmed the hemiketal linkage. The C-18 and C-19 carbons appear at $\simeq \delta$ 28.0 and 18.0, respectively, in agallochins F-H (1-3). But in agallochin I the secondary methyl carbon came at δ 19.3, suggesting that it is 18-nor-diterpenoid. The third oxygenated carbon appeared at δ 69.5 (d), a value close to the C-6 or C-11 carbons with a hydroxyl.^{4,5} The hydroxyl was located at C-6 from the HMBC correlations (see Supporting Information) observed between C-6 (δ 69.5) and H-4, H-5, and H₂-7. The other HMBC correlations in support of the structure are those between C-3 (98.3) and H₂-2, H₂-1, H₃-19, and H-4 and C-20 (8 68.5) and H-5 and H-9. The NOESY correlations (cf. Experimental Section) observed between H-5 and H-9, H-1 and H-9, and H₂-20 and H-15 established the relative stereochemistry of the beyerene diterpeniod skeleton. The absolute configuration of agallochin I was taken as for beyerane in view of its levo specific rotation as noticed for all beyeranes⁶ to derive its structure as 3β ,20-epoxy- 3α , 6α -dihydroxy-18-nor-beyer-15-ene (4).

Compound 5, mp 136–138 °C, analyzed for C₂₂H₂₈O₄ by elemental analysis and the molecular ion at m/z 356 in its EIMS. A comparison of its physical and spectral characteristics (mp, IR, UV, $[\alpha]^{25}_{D}$, and ¹H NMR) with those of 2-acetoxy-1,15-beyeradiene-3,12-dione (5) proved their identity. This is the first report of its natural occurrence, although it was reported earlier as a derivative of the enol, 2-hydroxy-1,15-beyeradiene-3,12-dione (6), isolated from the plant Androstachys johnsonii Prain.⁹ However, its ¹³C NMR as well as 2-D NMR data were not reported earlier and hence are presented here (see Experimental Section). It is of interest to note that the chemical shift values of the olefinic carbons C-15 (138.8) and C-16 (137.4) are as in the related compounds¹⁰ and those of C-1 and C-2 in 5 (δ 140.6, 143.2) are in agreement with the corresponding values in orthosiphol D¹¹ with an acetoxyl at C-2 and not with the values in 1-en-3-one derivatives (δ 150, 120)^{12,13} and 1-en-2-hydroxy-3-one derivatives (δ 126 and \simeq 143 ppm) as in orthosiphol E.¹¹

Compound **6** analyzed for $C_{20}H_{26}O_3$ by elemental analysis and the molecular ion at m/z 314 in its EIMS. Its physical characteristics (mp, $[\alpha]^{25}_D$) and spectral (IR, UV, ¹H NMR) data were identical with those reported for 2-hydroxy-1,-15-beyeradiene-3,12-dione (**6**) isolated from *A. johonsonii*.⁹ Its ¹³C NMR data were not, however, reported, and the same are presented in the Experimental Section.

Experimental Section

General Experimental Procedures. Melting points were determined on a VEB-Analytic Dreader HMK hot plate and are uncorrected. Optical rotations were determined on a Roudalph Autopol-III polarimeter. IR spectra were recorded on a Perkin-Elmer-841 IR spectrometer in CHCl₃ solution. UV spectra were recorded on a Milton Roy Spectronic 1201 spectrometer in CHCl₃. ¹H NMR spectra were measured on Bruker Advance DRX 300 and JEOL JNM EX-90 spectrometers. ¹³C NMR spectra were measured on a Bruker Advance DRX 300 spectrometer at 75 MHz and JEOL JNM EX-90 spectrometer at 22.5 MHz using CDCl₃ as a solvent and tetramethylsilane as an internal reference. Mass spectra were obtained on a JEOL JMS-300 spectrometer. Elemental analyses were determined on a Carlo Erba 1108 instrument.

Plant Material. The roots of *Excoecaria agallocha* L. were collected from Corangi Mangrove forest near Bhiravapalem in the Godavari Estuary (16° 58' N latitude and 82° 15' E longitude) in March 1998 and were identified by Prof. B. Kondala Rao, Department of Marine Living Sources, Andhra University, Visakhapatnam. A voucher specimen (code: AU1/160) was deposited at the Marine Museum of the School of Chemistry, Andhra University, and the National Institute of Oceanography, Goa.

Extraction and Isolation. The air-dried and powdered plant material (4 kg) was extracted exhaustively with *n*-hexane. Removal of the solvent from the combined *n*-hexane extracts under reduced pressure gave a residue (35 g). The plant material was next extracted repeatedly with CH_2Cl_2 —MeOH (1:1). Removal of solvent from the combined CH_2Cl_2 —MeOH extracts gave a residue (60 g), which was extracted with EtOAc (500 mL × 3). Removal of solvent from the EtOAc extract under reduced pressure gave a residue (40 g). This residue was subjected to column chromatography over silica gel (Acme brand, 100–200 mesh, 350 g) using solvents of increasing polarity from *n*-hexane through EtOAc.

The residue from the respective column fractions on further purification by passage over silica gel or silver nitrate (20%) impregnated silica gel columns furnished compound F (1), 30 mg (fractions 46–65, *n*-hexanes–EtOAc, 4:1); compound G (2),

35 mg (fractions 66–71, *n*-hexanes–EtOAc, 4:1); compound H (**3**), 25 mg (fractions 80–92, *n*-hexanes–EtOAc, 3:2); compound I (**4**), 40 mg (fractions 138–147, *n*-hexanes–EtOAc, 2.5: 2.5); compound **5**, 60 mg (fractions 80–92, *n*-hexanes–EtOAc, 7:3); compound **6**, 70 mg (fractions 100–128, *n*-hexanes–EtOAc, 3:2), and *ent*-kauran-16 β -ol-3-one, 25 mg (fractions 73–77, *n*-hexanes–EtOAc, 3.5:1.5).

ent-3β,20-Epoxy-3α,6α-dihydroxykaur-16-ene (agal**lochin F) (1):** colorless oil; $[\alpha]^{25}_{D} - 21.6^{\circ}$ (*c* 1.2, CHCl₃); IR (Nujol) ν_{max} 3450, 720 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.20 $(1H, m, H-1\alpha)$, 1.20 $(1H, m, H-1\beta)$, 2.18 $(1H, m, H-2\alpha)$, 1.72 $(1H, m, H-2\beta)$, 1.20 (1H, m, H-5), 3.97 (1H, dt, J = 11.0, 4.0Hz, H-6a), 1.68 (1H, m, H-7a), 1.48 (1H, m, H-7 β), 1.19 (1H, m, H-9), 1.70 (1H, m, H-11 α), 1.50 (1H, m, H-11 β), 1.22 (1H, m, H-12 α), 1.50 (1H, m, H-12 β), 2.62 (1H, m, H-13), 1.23 (1H, m, H-14α), 1.45 (1H, m, H-14β), 1.50 (1H, m, H-15α), 2.10 (1H, m, H-15β), 4.81 (1H, s, H-17), 4.76 (1H, s, H-17), 1.20 (3H, s, H₃-18), 1.26 (3H, s, H₃-19), 3.82 (1H, d, J = 8.0, 7.0 Hz, H-20), 4.25 (1H, d, J = 8.0, 7.0 Hz, H-20); ¹³C NMR (CDCl₃, 75 MHz) δ 35.7 (t, C-1), 29.3 (t, C-2), 98.7 (s, C-3), 40.7 (s, C-4), 56.4 (d, C-5), 67.4 (d, C-6), 48.5 (t, C-7), 43.9 (s, C-8), 49.2 (d, C-9), 38.8 (s, C-10), 18.5 (t, C-11), 32.8 (t, C-12), 43.2 (d, C-13), 40.1 (t, C-14), 47.9 (t, C-15), 153.8 (s, C-16), 104.0 (t, C-17), 28.5 (q, C-18), 17.5 (q, C-19), 69.2 (t, C-20); partial correlations observed in the ${}^{1}\dot{H} - {}^{1}H$ COSY spectrum, $\dot{H} - {}^{1}\alpha$ with $H - 1\beta$ and H-2 α ; H-2 β with H-1 α ; H-6 β with H-7 α , H-7 β , and H-5; H-13 with H-12 α , H-12 β , and H-14 α ; H-17 with H-13; H₃-20 with H-1a; partial correlations observed in the ¹H-¹H NOESY spectrum, H-9 β with H-7 β , H-5 β with H-7 β , H-5 β with H-9 β , H₂-20 with H-14, H-9 β , and H-15 β ; EIMS m/z 318 [M]⁺, 300, 243, 182, 132, 104, 85; anal. C 75.22%, H 9.23%, calcd for C20H30O3, C 75.47%, H 9.43%.

3β,20-Epoxy-3α-hydroxybeyer-15-ene (agallochin G) (2): colorless needles (MeOH); mp 152–54 °C; $[\alpha]^{25}_{D}$ –59.2° (c 1.9, CHCl₃); IR (Nujol) v_{max} 3450, 720 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.18 (1H, m, H-1 α), 2.12 (1H, m, H-1 β), 1.72 (1H, m, H-2 α), 2.12 (1H, m, H-2 β), 1.24 (1H, d, J = 5.0 Hz, H-5), 1.64 (1H, m, H-6α), 1.08 (1H, m, H-6β), 1.28 (1H, m, H-7α), 1.62 (1H, m, H-7 β), 1.08 (1H, m, H-9), 1.63 (1H, m, H-11 α), 1.49 (1H, m, H-11 β), 1.24 (1H, m, H-12 α), 1.68 (1H, m, H-12 β), 1.02 (1H, m, H-14 α), 1.47 (1H, m, H-14 β), 5.59 (1H, d, J = 6.0Hz, H-15), 5.46 (1H, d, J = 6.0 Hz, H-16), 1.00 (3H, s, H₃-17), 1.02 (3H, s, H₃-18), 0.96 (3H, s, H₃-19), 3.82 (2H, ABq, J =8.0, 7.0 Hz, H₂-20); ¹³C NMR (CDCl₃, 75 MHz) δ 32.5 (t, C-1), 29.4 (t, C-2), 98.2 (s, C-3), 40.2 (s, C-4), 51.4 (d, C-5), 21.0 (t, C-6), 35.7 (t, C-7), 48.5 (s, C-8), 45.8 (d, C-9), 35.3 (s, C-10), 21.7 (t, C-11), 32.5 (t, C-12), 43.8 (s, C-13), 60.2 (t, C-14), 133.1 (d, C-15), 137.2 (d, C-16), 24.6 (q, C-17), 27.9 (q, C-18), 18.0 (q, C-19), 67.4 (t, C-20); partial correlations observed in the $^{1}H^{-1}H$ COSY spectrum, $H^{-1}\alpha$ with $H^{-1}\beta$ and $H^{-2}\alpha$; $H^{-2}\beta$ with H-1 β ; H-6 β with H-7 β ; H-11 β with H-12 β ; H-11 α with H-9; H-15 with H-16 and H_2 -20; partial correlations observed in the ${}^{1}H-{}^{1}H$ NOESY spectrum, H-3-19 with H-5 α , H-5 α and H-9 α , H-9 α and H-1 α , H₂-20 and H-15; EIMS *m*/*z* 302 [M]⁺, 287, 259, 233, 173, 131, 105; anal. C 79.30%, H 9.71%, calcd for C₂₀H₃₀O₂, C 79.47%, H 9.93%.

3β,20:15*R*,16*S*-Diepoxy-3α-beyeranol (agallochin H) (3): colorless needles (*n*-hexanes–EtOAc); mp 164–166 °C; $[\alpha]^{25}$ -76.4° (c 0.7, CHCl₃); IR (Nujol) v_{max} 3450, 1210,970 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.22 (1H, m, H-1α), 2.20 (1H, m, H-1*β*), 1.80 (1H, m, H-2*α*), 2.22 (1H, m, H-2*β*), 1.30 (1H, m, H-5), 1.60 (1H, m, H-6a), 1.32 (1H, m, H-6 β), 1.38 (1H, m, H-7α), 1.68 (1H, m, H-7β), 1.28 (1H, m, H-9), 1.72 (1H, m, H₂-11), 1.20 (1H, m, H-12 α), 1.90 (1H, m, H-12 β), 0.53 (1H, m, H-14 α), 1.24 (1H, m, H-14 β), 3.15 (1H, d, J = 4.0 Hz, H-15), 3.00 (1H, d, J = 4.0 Hz, H-16), 1.02 (3H, s, H₃-17), 1.04 (3H, s, H₃-18), 1.00 (3H, s, H₃-19), 3.89 (1H, d, J = 8.0 Hz, H-20), 4.05 (1H, d, J = 8.0 Hz, H-20); ¹³C NMR (CDCl₃, 75 MHz) δ 33.7 (t, C-1), 29.4 (t, C-2), 98.2 (s, C-3), 40.4 (s, C-4), 51.1 (d, C-5), 20.1 (t, C-6), 35.6 (t, C-7), 43.6 (s, C-8), 49.5 (d, C-9), 35.5 (s, C-10), 21.2 (t, C-11), 31.7 (t, C-12), 39.0 (s, C-13), 46.0 (t, C-14), 55.2 (d, C-15), 59.6 (d, C-16), 21.3 (q, C-17), 27.6 (q, C-18), 18.1 (q, C-19), 67.8 (t, C-20); partial correlations observed in the ${}^{1}H{}^{-1}H$ COSY spectrum, H-1 α with H-2 β ; H-2 α with H-1 β ; H-6 α with H-6 β ; H-7 α with H-7 β ; H-12 α with H-12 β

and H₂-11; H-14 α with H-14 β ; H-15 with H-16; H-20 with H-9 and H-1 β ; EIMS *m*/*z* 318 [M]⁺, 300, 285, 144; *anal.* C 75.35%, H 9.32%, cacld for C₂₀H₃₀O₃, C 75.47%, H 9.43%.

3β,20-Epoxy-3α,6α-dihydroxy-18-nor-beyer-15-ene (agal**lochin I) (4):** colorless oil; $[\alpha]^{25}_{D}$ -52.2° (*c* 1.0, CHCl₃); IR (Nujol) ν_{max} 3340, 725 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.00 $(1H, m, H_2-1), 1.70 (1H, m, H-2\alpha), 1.98 (1H, m, H-2\beta), 2.05$ $(1H, m, H-4), 0.98 (1H, m, H-5), 3.80 (1H, m, H-6\beta), 1.40 (1H, m, H-6\beta)$ m, H-7α), 1.86 (1H, m, H-7β), 1.10 (1H, m, H-9), 1.70 (1H, m, H₂-11), 1.21 (1H, m, H₂-12), 1.05 (1H, m, H-14a), 1.52 (1H, m, H-14 β), 5.49 (1H, d, J = 5.4 Hz, H-15), 5.57 (1H, d, J = 5.4Hz, H-16), 1.00 (3H, s, H₃-17), 1.13 (3H, d, J = 6.3 Hz, H₃-19), 3.80 (2H, m, H₂-20); ¹³C NMR (CDCl₃, 75 MHz) δ 31.2 (t, C-1), 26.9 (t, C-2), 98.3 (s, C-3), 41.5 (d, C-4), 56.9 (d, C-5), 69.5 (d, C-6), 44.7 (t, C-7), 49.4 (s, C-8), 44.5 (d, C-9), 36.3 (s, C-10), 20.7 (t, C-11), 31.9 (t, C-12), 43.7 (s, C-13), 60.4 (t, C-14), 133.3 (d, C-15), 137.9 (d, C-16), 24.4 (q, C-17), 19.3 (q, C-19), 68.5 (t, C-20); partial correlations observed in the $^{1}H^{-1}H$ COSY spectrum, H₂-1 with H-2 α ; H-2 α with H-2 β ; H-4 with H₃-19 and H-5; H-7 α with H-7 β ; H₂-11 with H₂-12; H-14 α with H-14 β ; H-6 α with H₂-7 and H-5; H-16 with H-15; partial correlations observed in the ${}^{1}\text{H}{-}{}^{1}\text{H}$ NOESY; H-5 α with H-9 α , H-9 α with H-1 α , and H₂-20 with H-15; FABMS (+ve) m/z 305 [M + H]⁺, 279, 257, 239, 213, 167, 149. anal. C 74.74%, H 8.95%, calcd for C₁₉H₂₈O₃, C 75.00%, H 9.21%.

Acetylation of Agallochin I. Formation of the Acetate (4a). Agallochin I (4) (25 mg) was acetylated with a mixture of acetic anhydride (1.5 mL) and pyridine (1.5 mL) at room temperature for 24 h. After usual workup, it yielded the monoacetyl derivative 4a (20 mg): colorless oil, $[\alpha]^{25}{}_{\rm D}$ – 60.4° (*c* 0.2, CHCl₃); ¹H NMR (CDCl₃, 90 MHz), 1.05 (3H, s, Me), 1.15 (3H, d, J = 6 Hz), 2.05 (3H, s, acetate methyl), 3.92 (2H, m, H₂-20), 5.08 (1H, dt, J = 11.5, 5.0 Hz, H-6), 5.52 (1H, d, J = 5.6 Hz, H-15), 5.72 (1H, d, J = 5.6 Hz, H-16); FABMS (+ve) m/z 347 [M⁺ + H]⁺, 287, 269, 239, 207, 178, 165, 154; *anal*. C 72.61%, H 8.48%, calcd for C₂₁H₃₀O₄, C 72.83%, H 8.67%.

2-Acetoxy-1,15-beyeradiene-3,12-dione (5): colorless needles (MeOH); mp 136–138 °C; [α]²⁵_D –294.2° (*c* 2.1, CHCl₃); IR (Nujol) $\nu_{\rm max}$ 1750, 1210, 1670, 1685, 720, 760 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.46 (1H, s, H-1), 1.85 (1H, dd, J = 11.0, 12.0 Hz, H-5), 1.70 (1H, m, H-6α), 1.62 (1H, m, H-6β), 1.56 (1H, m, H-7 α), 2.00 (1H, m, H-7 β), 1.99 (1H, dd, J = 11.0, 6.0Hz, H-9), 2.60 (1H, dd, J = 16.0 11.0 Hz, H-11α), 2.45 (1H, dd, J = 16.0, 6.0 Hz, H-11 β), 1.68 (1H, d, J = 11.0 Hz, H-14 α), 1.96 (1H, d, J = 11.0 Hz, H-14 β), 6.08 (1H, d, J = 5.5 Hz, H-15), 5.72 (1H, d, J = 5.5 Hz, H-16), 1.12 (3H, s, H₃-17), 1.22 (3H, s, H₃-18), 1.14 (3H, s, H₃-19), 1.11 (3H, s, H₃-20), 2.18 (3H, s, OCOCH3); ¹³C NMR (CDCl3, 75 MHz) & 140.6 (d, C-1), 143.2 (s, C-2), 196.8 (s, C-3), 45.4 (s, C-4), 52.3 (d, C-5), 20.3 (t, C-6), 35.7 (t, C-7), 49.6 (s, C-8), 49.5 (d, C-9), 39.5 (s, C-10), 35.8 (t, C-11), 209.9 (s, C-12), 58.1 (s, C-13), 57.5 (t, C-14), 133.8 (d, C-15), 137.4 (d, C-16), 17.3 (q, C-17), 27.3 (q, C-18), 21.6 (q, C-19), 16.9 (q, C-20), 168.7 (s, OCOCH₃), 20.2 (s, OCOCH₃); partial correlations observed in the ¹H-¹H COSY spectrum, H-7 α with H-7 β and H-6 α ; H-11 α with H-11 β and H-9; H-14 α with H-14 β ; H-15 with H-16; EIMS m/z 356 [M]⁺, 314, 298, 270, 215, 154, 119, 93; anal. C 73.90%, H 7.74%, calcd for C22H28O4, C 74.15%, H 7.86%.

2-Hydroxy-1,15-beyeradiene-3,12-dione (6): colorless oil; $[\alpha]^{25}{}_{\rm D}$ -22.4° (*c* 0.53, CHCl₃); IR (Nujol) $\nu_{\rm max}$ 3450, 1670, 1690, 720, 760 cm⁻¹; ¹H NMR (CDCl₃, 90 MHz);⁹ ¹³C NMR (CDCl₃, 22.5 MHz) δ 124.4 (d, C-1), 144.0 (s, C-2), 200.2 (s, C-3), 43.7 (s, C-4), 52.9 (d, C-5), 19.8 (t, C-6), 35.7 (t, C-7), 50.4 (s, C-8), 49.3 (d, C-9), 39.3 (s, C-10), 35.8 (t, C-11), 210.3 (s, C-12), 57.2 (s, C-13), 58.0 (t, C-14), 138.9 (d, C-15), 136.9 (d, C-16), 17.4 (q, C-17), 26.6 (q, C-18), 21.7 (q, C-19), 16.7 (q, C-20); EIMS *m*/*z* 314 [M]⁺, 271, 271, 201, 173, 135, 119, 105, 93; *anal.* C 76.18%, H 8.10%, calcd for C₂₀H₂₆O₃, C 76.43%, H 8.28%.

ent-Kauran-16 β -ol-3-one: colorless needles (MeOH); mp 155–160 °C; [α]²⁵_D –65.2° (c 0.32, CHCl₃); spectral data (IR, ¹H, and ¹³C NMR) were identical with literature values.¹⁴

Acknowledgment. The authors are grateful to the Department of Ocean Development, New Delhi, for financial

support and to the CSIR, New Delhi, for sanctioning the Emeritus Scientist scheme to A.S.R.A. We are also grateful to the Head, RSIC, Lucknow, and to the Coordinator UGC-COSIST and SAP programs, School of Chemistry, for providing spectral facilities and to Prof. B. Kondala Rao, Department of Marine Living Sources, Andhra University, for identification of the plant material.

Supporting Information Available: The HMBC data of compounds **1–5** are available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Part II of the series Chemical Examination of Indian Mangrove Plants.
- (2) Anjaneyulu, A. S. R.; Lakshmana Rao, V. Phytochemistry 2000, 55, 891–901.
- (3) Hao, H.; Yunlong, X.; Handong, S. *Phytochemistry* **1989**, *28*, 2753–2757.
- (4) Wang, Y.; Chen, Y.; Kim, D.; Sun, H. Phytochemistry 1997, 45, 1015– 1017.

- (5) Shun-Hua, W.; Hong-Jie, Z.; Yi-Ping, C.; Zhong-Wen, L.; Han-Dong, S. *Phytochemistry* **1993**, *34*, 1099–1102.
- (6) Konishi, T.; Konishima, T.; Fujiwara, Y.; Kiyosawa, S. J. Nat. Prod. 2000, 344–346.
- (7) Martin, A. S.; Rovirosa, J.; Castillo, M. Phytochemistry 1983, 22, 1461–1463.
- (8) Tori, K.; Kitahonoki, K.; Takano, Y.; Tamida, H.; Tsuji, T. Tetrahedron Lett. 1964, 559–564.
- (9) Piacenza, L. P. L.; Pegel, K. H.; Phillips, L.; Waight, E. S. J. Chem. Soc., Perkin Trans. 1 1979, 1004–1012.
- (10) Duri, Z. J.; Huges, N. A.; Munkombwe, N. M. Phytochemistry 1992, 31, 699-702.
- (11) Takeda, Y.; Matsumoto, T.; Terao, H.; Shingu, T.; Futatsuishi, Y.; Nohara, T.; Kajimoto, T. *Phytochemistry* 1993, *33*, 411–415.
- (12) Findlay, J. A.; Li, G.; Penner, P. E.; Miller, J. D. J. Nat. Prod. 1995, 58, 197–200.
- (13) Xu, Y.; Kubo, I.; Tang, C.; Zhang, F.; Sun, H. Phytochemistry 1993, 34, 461-465.
- (14) Tori, M.; Arbiyanti, H.; Taira, Z.; Asakawa, Y. *Phytochemistry* 1993, 32, 335–348.

NP010262U